MA 241 : Ordinary Differential Equations (JAN-APR, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 2

1. Let $f(t, y, \dot{y})=h(t)$ be the general form of the first order equation, where $h=h(t)$ is all the combined non-homogeneous terms. Consider $L(r, s)=f(t, r, s)$, where t is fixed. If L is linear in r and s, show that there exists functions $p_{0}=p_{0}(t)$ and $p_{1}=p_{1}(t)$ so that f takes of the form,

$$
f(t, y, \dot{y})=p_{0}(t) \dot{y}(t)+p_{1}(t) y(t) .
$$

More generally an $n^{\text {th }}$ order linear equation has the general form,

$$
p_{0}(t) y^{n}(t)+p_{1}(t) y^{n-1}(t)+\ldots \ldots \ldots+p_{n}((t) y(t)=h(t) .
$$

2. Give examples of linear and non-linear equations.
3. Classify the following equations as linear or non-linear:
i. $\dot{y}=a y-b y^{2}$
ii. $\dot{y}=-t / y$
iii. $\dot{y}=-y / t$
iv. $\dot{y}(t)=\sin (t)$
v. $\dot{y}=|y|$
vi. $y \dot{y}=y \quad$ vii. $\dot{y}=\sin y$
viii. $y \dot{y}=\frac{g}{W}(W-B-c y)$
ix. (Duffing Equation): $\ddot{y}+\delta \dot{y}+\alpha y+\beta x^{3}=0$
x. (Van der Pol Equation): $\ddot{y}-\mu\left(y^{2}-1\right) \dot{y}+y=0$
xi. (prey-predator system): $\dot{x}=a x-b x y, \dot{y}=-c y+d x y$
xii. (Epidemiology): $\dot{S}=-\beta S I, \dot{I}=\beta S I-\gamma I$
xiii. siny $+x \cos \dot{y}=0 \quad$ xiv. (Bernoulli Equation): $\dot{y}+\phi(t) y=\psi(t) y^{n}$
xv. (Reduced Bernoulli equation): $\dot{y}+(1-n) \phi(t) y=(1-n) \psi(t)$
xvi. (Generalized Riccati equation): $\dot{y}+\psi(t) y^{2}+\phi(t)+\chi(t)=0$
4. Consider the Bernoulli equation

$$
\dot{x}+\phi x=\psi x^{n}
$$

where ϕ, ψ are continuous functions. For $n \neq 1$, it is non-linear; show that it can be reduced to a linear equation by the substitution $y=x^{1-n}$. Then solve the equation.
5. Solve: (i). $\dot{x}+e^{t} x=e^{t} x^{2} \quad$ (ii). $\dot{x}+t^{n} x=x^{n}$.
6. Consider the Generalized Riccati equation

$$
\dot{y}+\psi(t) y^{2}+\phi(t) y+\chi(t)=0
$$

where ψ, χ, ϕ are functions of t. In general we do not have solutions in explicit form. Assume $x=x_{1}$ is one known solution, let x be any other solution. Write $x=x_{1}+y$. Show that y satisfies the Bernoulli equation

$$
\dot{y}+\left(2 x_{1} \psi+\phi\right) y+\psi y^{2} .
$$

7. Find the general solution of the equation $\dot{x}+x^{2}+x-\left(1+t+t^{2}\right)=0$.
8. Assume $\psi(t) \neq 0$ for all t in the non-linear Riccati equation $\dot{y}+\psi(t) y^{2}+\phi(t) y+\chi(t)=0$ (Of course, if $\psi \equiv 0$, it is a linear equation). Make the following substitution $y=\frac{1}{\psi} \frac{\dot{z}}{z}$, reduce the non-linear Riccati equation to a second order linear equation.
9. Reduce the original Riccati (non-linear) equation, $\dot{x}+a x^{2}=b t^{m} ; a, b$ constants, to a second order linear equation $\ddot{z}-a b t^{m} z=0$.
10. a) Consider the linear problem $\dot{y}+p y=q$. Show that if $q \geq 0$, then $y \geq 0$ if it is initially so, that is if $y(0) \geq 0$. Now consider the equation $\dot{x}+p x=q_{1}$ and $\dot{y}+p y=q_{2}$, then compare the solutions when $q_{1} \geq q_{2}$.
b) Consider $\dot{x}+p_{1} x=q$ and $\dot{y}+p_{2} y=q$. Show that, if $p_{2} \geq p_{1}, x(0) \geq y(0)$ and $y \geq 0$, then $x \geq y$.
c) Consider the inequality $\dot{y}+p y \leq q$. Derive the inequality

$$
y(t) \leq \exp \left(-\int_{0}^{t} p(s) d s\right)\left[y(0)+\int_{0}^{t} q(s) \exp \left(\int_{0}^{s} p(z) d z\right) d s\right] .
$$

d) Derive the Gronwall's inequality. Assume f and g are continuous real valued functions defined on the interval $[a, b]$ and $g \geq 0$. Assume $f(t) \leq c+k \int_{t_{0}}^{t} f(s) g(s) d s$, where c, k are constants, $k \geq 0$, then

$$
f(t) \leq c \exp \left(k \int_{t_{0}}^{t} g(s) d s\right), \quad t_{0} \in[a, b] .
$$

e) (Uniqueness) Let p, q are continuous functions on $[a, b]$. Show that the linear initial value problem $\dot{x}+p(t) x=q(t), x\left(t_{0}\right)=x_{0}$ has atmost one solution.

